Glucólisis

La glucólisis o glicolisis (del griego glycos, azúcar y lysis, ruptura), es la vía metabólica encargada de oxidar la glucosa con la finalidad de obtener energía para la célula. Consiste en 10 reacciones enzimáticas consecutivas que convierten a la glucosa en dos moléculas de piruvato, el cual es capaz de seguir otras vías metabólicas y así continuar entregando energía al organismo.[1]

El tipo de glucólisis más común y más conocida es la vía de Embden-Meyerhof, explicada inicialmente por Gustav Embden y Otto Meyerhof. El término puede incluir vías alternativas, como la vía de Entner-Doudoroff. No obstante, glucólisis se usa con frecuencia como sinónimo de la vía de Embden-Meyerhof. Es la vía inicial del catabolismo (degradación) de carbohidratos.

Generalidades

Durante la glucólisis se obtiene un rendimiento neto de dos moléculas de ATP y dos moléculas de NADH; el ATP puede ser usado como fuente de energía para realizar trabajo metabólico, mientras que el NADH puede tener diferentes destinos. Puede usarse como fuente de poder reductor en reacciones anabólicas; si hay oxígeno, puede oxidarse en la cadena respiratoria, obteniéndose tres ATPs; si no hay oxígeno, se usa para reducir el piruvato a lactato (fermentación láctica), o a CO2 y etanol (fermentación alcohólica), sin obtención adicional de energía.

Las funciones de la glucólisis son:

  1. La generación de moléculas de alta energía (ATP y NADH) como fuente de energía celular en procesos de respiración aeróbica (presencia de oxígeno) y fermentación (ausencia de oxígeno).
  2. La generación de piruvato que pasará al ciclo de Krebs, como parte de la respiración aeróbica.
  3. La producción de intermediarios de 6 y 3 carbonos que pueden ser utilizados en otros procesos celulares.

En eucariotas y procariotas, la glucólisis ocurre en el citosol de la célula. En células vegetales, algunas de las reacciones glucolíticas se encuentran también en el ciclo de Calvin, que ocurre dentro de los cloroplastos. La amplia conservación de esta vía incluye los organismos filogenéticamente más antiguos, y por esto se considera una de las vías metabólicas más antiguas.[2]

Descubrimiento

Los primeros estudios informales de los procesos glucolíticos fueron iniciados en 1860, cuando Louis Pasteur descubrió que los microorganismos son los responsables de la fermentación,[3] y en 1897 cuando Eduard Buchner encontró que cierto extracto celular pueden causar fermentación. La siguiente gran contribución fue de Arthur Harden y William Young en 1905, quienes determinaron que para que la fermentación tenga lugar son necesarias una fracción celular de masa molecular elevada y termosensible (enzimas) y una fracción citoplasmática de baja masa molecular y termorresistente (ATP, ADP, NAD+ y otros cofactores). Los detalles de la vía en sí se determinaron en 1940, con un gran avance de Otto Meyerhoff y algunos años después por Luis Leloir. Las mayores dificultades en determinar lo intrincado de la vía fueron la corta vida y las bajas concentraciones de los intermediarios en las rápidas reacciones glicolíticas.

Visión general

La glucólisis es la forma más rápida de conseguir energía para una célula y, en el metabolismo de carbohidratos, generalmente es la primera vía a la cual se recurre. Se encuentra estructurada en 10 reacciones enzimáticas que permiten la transformación de una molécula de glucosa a dos moléculas de piruvato mediante un proceso catabólico.

La glucólisis es una de las vías más estudiadas, y en los libros de texto generalmente se la encuentra dividida en dos fases: la primera, de gasto de energía y la segunda fase, que obtiene energía.

La primera fase consiste en transformar una molécula de glucosa en dos moléculas de gliceraldehído -una molécula de baja energía- mediante el uso de 2 ATP. Esto permite duplicar los resultados de la segunda fase de obtención energética. En la segunda fase, el gliceraldehído se transforma en un compuesto de alta energía, cuya hidrólisis genera una molécula de ATP, y como se generaron 2 moléculas de gliceraldehído, se obtienen en realidad dos moléculas de ATP. Esta obtención de energía se logra mediante el acoplamiento de una reacción fuertemente exergónica después de una levemente endergónica. Este acoplamiento ocurre una vez más en esta fase, generando dos moléculas de piruvato. De esta manera, en la segunda fase se obtienen 4 moléculas de ATP.

Reacción

La reacción global de la glucólisis es:[1]

Reacción global de la glucólisis
Alpha-D-Glucopyranose.svg \Longrightarrow Pyruvat.svg + Pyruvat.svg

Glucosa + 2 NAD^+ + 2ADP + 2P_i \Longrightarrow 2 piruvato + 2 NADH + 2 ATP + 2 H^+ + 2H_2O

  • El ATP (adenosín trifosfato) es la fuente de energía universal de la célula.
  • NADH y H+, otorgan la capacidad de reducir otros compuestos pertenecientes a otras vías metabólicas, o bien para sintetizar ATP.
  • El piruvato es la molécula que seguirá oxidándose en el ciclo de Krebs, como parte de la respiración aeróbica, donde dará origen a más moléculas de NADH, que podrán pasar a sintetizar ATP en la mitocondria.

El enlace éster-fosfato

Destino del piruvato

Véanse también: Fermentación y Ciclo de Krebs

Luego de que una molécula de glucosa se transforme en 2 moléculas de piruvato, las condiciones del medio en que se encuentre determinarán la vía metabólica a seguir.

En organismos aeróbicos, el piruvato seguirá oxidándose por la enzima piruvato deshidrogenasa y el ciclo de Krebs, creando intermediarios como NADH y FADH2. Estos intermediarios no pueden cruzar la membrana mitocondrial, y por lo tanto, utilizan sistemas de intercambio con otros compuestos llamados lanzaderas (en inglés, shuttles). Los más conocidos son la lanzadera malato-aspartato y la lanzadera glicerol-3-fosfato. Los intermediarios logran entregar sus equivalentes[4] al interior de la membrana mitocondrial, y que luego pasarán por la cadena de transporte de electrones, que los usará para sintetizar ATP.

De esta manera, se puede obtener hasta 38 moles de ATP a partir de 1 mol de glucosa.

Sin embargo, cuando las células no posean mitocondrias (ej: eritrocito) o cuando requieran de grandes cantidades de ATP (ej.: el músculo al ejercitarse), el piruvato sufre fermentación que permite obtener 2 moles de ATP por cada mol de glucosa, por lo que esta vía es poco eficiente respecto a la fase aeróbica de la glucólisis.

El tipo de fermentación varía respecto al tipo de organismos: en levaduras, se produce fermentación alcohólica, produciendo etanol y CO2 como productos finales, mientras que en músculo, eritrocitos y algunos microorganismos se produce fermentación láctica, que da como resultado ácido láctico o lactato.

Etapas de la glucólisis

La glucólisis se divide en dos partes principales y diez reacciones enzimáticas, que se describen a continuación.

Fase de gasto de energía (ATP)

Esta primera fase de la glucólisis consiste en transformar una molécula de glucosa en dos moléculas de gliceraldehído. Hasta el momento solo se ha consumido energía (ATP), sin embargo, en la segunda etapa, el gliceraldehído es convertido a una molécula de mucha energía, donde finalmente se obtendrá el beneficio final de 4 moléculas de ATP.

 1er paso: Hexoquinasa

Véase también: Hexoquinasa
Reaction-Glucose-Glucose-6P oc.png
Glucosa + ATP Biochem reaction arrow foward NNNN horiz med.png Glucosa-6-fosfato + ADP
\Delta G^0 = -16,7 \frac{kJ}{mol}[5]

La primera reacción de la glucólisis es la fosforilación de la glucosa, para activarla (aumentar su energía) y así poder utilizarla en otros procesos cuando sea necesario. Esta activación ocurre por la transferencia de un grupo fosfato del ATP, una reacción catalizada por la enzima hexoquinasa,[6] la cual puede fosforilar (añadir un grupo fosfato) a moléculas similares a la glucosa, como la fructosa y manosa.

Las ventajas de fosforilar la glucosa son 2: La primera es hacer de la glucosa un metabolito más reactivo, mencionado anteriormente, y la segunda ventaja es que la glucosa-6-fosfato no puede cruzar la membrana celular -a diferencia de la glucosa-ya que en la célula no existe un transportador de G6P. De esta forma se evita la pérdida de sustrato energético para la célula.

Técnicamente hablando, la hexoquinasa sólo fosforila las D-hexosas, y utiliza de sustrato MgATP2+, ya que este catión permite que el último fosfato del ATP (fosfato gamma, γ-P o Pγ) sea un blanco más fácil para el ataque nucleofílico que realiza el grupo hidroxilo (OH) del sexto carbono de la glucosa, lo que es posible debido al Mg2+ que apantalla las cargas de los otros dos fosfatos.[1] [7]

Esta reacción posee un ΔG negativo, y por tanto se trata de una reacción en la que se pierde energía en forma de calor. En numerosas bacterias esta reacción esta acoplada a la última reacción de la glucólisis (de fosfoenolpiruvato a piruvato) para poder aprovechar la energía sobrante de la reacción: el fosfato del fosfoenolpiruvato se transfiere de una a otra proteína de un sistema de transporte fosfotransferasa, y en última instancia, el fosfato pasará a una molécula de glucosa que es tomada del exterior de la célula y liberada en forma de G6P en el interior celular. Se trata por tanto de acoplar la primera y la última reacción de esta vía y usar el excedente de energía para realizar un tipo de transporte a través de membrana denominado translocación de grupo.

2o paso: Glucosa-6-P isomerasa

Véase también: Fosfohexosa isomerasa
Reaction-Glucose-6P-Fructose-6P oc.png
Glucosa-6-fosfato Biochem reaction arrow reversible NNNN horiz med.png Fructosa-6-fosfato
\Delta G^0 = 1,7 \frac{kJ}{mol}[5]

Éste es un paso importante, puesto que aquí se define la geometría molecular que afectará los dos pasos críticos en la glucólisis: El próximo paso, que agregará un grupo fosfato al producto de esta reacción, y el paso 4, cuando se creen dos moléculas de gliceraldehido que finalmente serán las precursoras del piruvato.[1]

En esta reacción, la glucosa-6-fosfato se isomeriza a fructosa-6-fosfato, mediante la enzima glucosa-6-fosfato isomerasa. La isomerización ocurre en una reacción de 4 pasos, que implica la apertura del anillo y un traspaso de protones a través de un intermediario cis-enediol[8]

Puesto que la energía libre de esta reacción es igual a +1,7 kJ/mol la reacción es no espontánea y se debe acoplar.

3er paso: Fosfofructoquinasa

Véase también: Fosfofructoquinasa-1
Reaction-Fructose-6P-F16BP oc.png
Fructosa-6-fosfato + ATP Biochem reaction arrow foward NNNN horiz med.png Fructosa-1,6-bifosfato + ADP
\Delta G^0 = -14,2 \frac{kJ}{mol}[5]

Fosforilación de la fructosa 6-fosfato en el carbono 1, con gasto de un ATP, a través de la enzima fosfofructoquinasa-1 (PFK1). También este fosfato tendrá una baja energía de hidrólisis. Por el mismo motivo que en la primera reacción, el proceso es irreversible. El nuevo producto se denominará fructosa-1,6-bifosfato.

La irreversibilidad es importante, ya que la hace ser el punto de control de la glucólisis. Como hay otros sustratos aparte de la glucosa que entran en la glucólisis, el punto de control no está colocado en la primera reacción, sino en ésta. La fosfofructoquinasa tiene centros alostéricos, sensibles a las concentraciones de intermediarios como citrato y ácidos grasos. Liberando una enzima llamada fosfructocinasa-2 que fosforila en el carbono 2 y regula la reacción.

4o paso: Aldolasa

Véase también: Aldolasa
Reaction-F16BP-DOAP-GA3P unlabel.png
Fructosa-1,6-bifosfato Biochem reaction arrow reversible NNNN horiz med.png Dihidroxiacetona-fosfato + Gliceraldehído-3-fosfato
\Delta G^0 = 23,8 \frac{kJ}{mol}[5]

La enzima aldolasa (fructosa-1,6-bifosfato aldolasa), mediante una condensación aldólica reversible, rompe la fructosa-1,6-bifosfato en dos moléculas de tres carbonos (triosas): dihidroxiacetona fosfato y gliceraldehído-3-fosfato. Existen dos tipos de aldolasa, que difieren tanto en el tipo de organismos donde se expresan, como en los intermediarios de reacción.

Esta reacción tiene una energía libre (ΔG) entre 20 a 25 kJ/mol, por lo tanto en condiciones estándar no ocurre de manera espontánea. Sin embargo, en condiciones intracelulares la energía libre es pequeña debido a la baja concentración de los sustratos, lo que permite que esta reacción sea reversible.[1]

5o paso: Triosa fosfato isomerasa

Artículo principal: Triosa fosfato isomerasa
Reaction DHAP to GAP.png
Dihidroxiacetona-fosfato Biochem reaction arrow reversible NNNN horiz med.png Gliceraldehído-3-fosfato
\Delta G^0 = 7,5 \frac{kJ}{mol}[5]

Puesto que sólo el gliceraldehído-3-fosfato puede seguir los pasos restantes de la glucólisis, la otra molécula generada por la reacción anterior (dihidroxiacetona-fosfato) es isomerizada (convertida) en gliceraldehído-3-fosfato. Esta reacción posee una energía libre en condiciones estándar positiva, lo cual implicaría un proceso no favorecido, sin embargo al igual que para la reacción 4, considerando las concentraciones intracelulares reales del reactivo y el producto, se encuentra que la energía libre total es negativa, por lo que la dirección favorecida es hacia la formación de G3P.
Éste es el último paso de la “fase de gasto de energía”. Sólo se ha consumido ATP en el primer paso (hexoquinasa) y el tercer paso (fosfofructoquinasa-1). Cabe recordar que el 4to paso (aldolasa) genera una molécula de gliceraldehído-3-fosfato, mientras que el 5to paso genera una segunda molécula de éste. De aquí en adelante, las reacciones a seguir ocurrirán dos veces, debido a las 2 moléculas de gliceraldehído generadas de esta fase. Hasta esta reacción hay intervención de energía (ATP).

Fase de beneficio Energético

6o paso: Gliceraldehído-3-fosfato deshidrogenasa

D-Glycerinaldehyd-3-phosphat2.svg NAD+   NADH
+ Pi       + H+
GG-Pfeil 1-4.svg
Gliceraldehído-3-fosfato
deshidrogenasa
D-1,3-Bisphosphoglycerat2.svg
Gliceraldehído-3-fosfato
+ Pi + NAD+
Biochem reaction arrow reversible NNNN horiz med.png 1,3-Bisfosfoglicerato
+ NADH + H+
  \Delta G^0 = 6,3 \frac{kJ}{mol}[5]

Esta reacción consiste en oxidar el gliceraldehído-3-fosfato utilizando NAD+ para añadir un ion fosfato a la molécula, la cual es realizada por la enzima gliceraldehído-3-fosfato deshidrogenasa o bien, GAP deshidrogenasa en 5 pasos, y de ésta manera aumentar la energía del compuesto.

Técnicamente, el grupo aldehído se oxida a un grupo acil-fosfato, que es un derivado de un carboxilo fosfatado. Este compuesto posee una energía de hidrólisis sumamente alta (cercana a los 50 kJ/mol) por lo que se da inicio al proceso de reacciones que permitirán recuperar el ATP más adelante.

Mientras el grupo aldehído se oxida, el NAD+ se reduce, lo que hace de esta reacción una reacción redox. El NAD+ se reduce por la incorporación de algún [H+] dando como resultado una molécula de NADH de carga neutra.

7o paso: Fosfoglicerato quinasa

Véase también: Fosfoglicerato quinasa
D-1,3-Bisphosphoglycerat2.svg ADP   ATP
GG-Pfeil 1-4.svg
Fosfoglicerato
quinasa
D-3-Phosphoglycerat2.svg
1,3-Bisfosfoglicerato
+ ADP
Biochem reaction arrow reversible NNNN horiz med.png 3-Fosfoglicerato
+ ATP
  \Delta G^0 = -18,5 \frac{kJ}{mol}[5]

En este paso, la enzima fosfoglicerato quinasa transfiere el grupo fosfato de 1,3-bisfosfoglicerato a una molécula de ADP, generando así la primera molécula de ATP de la vía. Como la glucosa se transformó en 2 moléculas de gliceraldehído, en total se recuperan 2 ATP en esta etapa. Nótese que la enzima fue nombrada por la reacción inversa a la mostrada, y que ésta opera en ambas direcciones.

Los pasos 6 y 7 de la glucólisis nos muestran un caso de acoplamiento de reacciones, donde una reacción energéticamente desfavorable (paso 6) es seguida por una reacción muy favorable energéticamente (paso 7) que induce la primera reacción. En otras palabras, como la célula se mantiene en equilibrio, el descenso en las reservas de 1,3 bifosfoglicerato empuja a la enzima GAP deshidrogenasa a aumentar sus reservas. La cuantificacion de la energía libre para el acople de ambas reacciones es de alrededor de -12 kJ/mol.

Ésta manera de obtener ATP sin la necesidad de O2 se denomina fosforilación a nivel de sustrato.

8o paso: Fosfoglicerato mutasa

Véase también: Fosfoglicerato mutasa
350px
3-FosfogliceratoBiochem reaction arrow reversible NNNN horiz med.png 2-Fosfoglicerato
\Delta G^0 = 4,4 \frac{kJ}{mol}[5]

8. Se isomeriza el 3-fosfoglicerato procedente de la reacción anterior dando 2-fosfoglicerato, la enzima que cataliza esta reacción es la fosfoglicerato mutasa. Lo único que ocurre aquí es el cambio de posición del fosfato del C3 al C2. Son energías similares y por tanto reversibles, con una variación de energía libre cercana a cero.

9o paso: Enolasa

Véase también: Enolasa
350px
2-FosfogliceratoBiochem reaction arrow reversible NNNN horiz med.png Fosfoenolpiruvato + H2O
\Delta G^0 = 7,5 \frac{kJ}{mol}[5]

9. La enzima enolasa propicia la formación de un doble enlace en el 2-fosfoglicerato, eliminando una molécula de agua formada por el hidrógeno del C2 y el OH del C3. El resultado es el fosfoenolpiruvato.

[editar] 10o paso: Piruvato quinasa

Véase también: Piruvato quinasa
350px
FosfoenolpiruvatoBiochem reaction arrow reversible NNNN horiz med.png Piruvato
\Delta G^0 = -31,4 \frac{kJ}{mol}[5]

10. Desfosforilación del fosfoenolpiruvato, obteniéndose piruvato y ATP. Reacción irreversible mediada por la piruvato quinasa.

El enzima piruvato quinasa es dependiente de magnesio y potasio. La energía libre es de -31,4 kJ/mol, por lo tanto la reacción es favorable e irreversible.

El rendimiento total de la glucólisis de una sola glucosa (6C) es de 2 ATP y no 4 (dos por cada gliceraldehído-3-fosfato (3C)), ya que se consumen 2 ATP en la primera fase, y 2 NADH (que dejarán los electrones Nc en la cadena de transporte de electrones para formar 3 ATP por cada electrón). Con la molécula de piruvato, mediante un paso de oxidación intermedio llamado descarboxilación oxidativa, mediante el cual el piruvato pasa al interior de la mitocondria, perdiendo CO2 y un electrón que oxida el NAD+, que pasa a ser NADH más H+ y ganando un CoA-SH (coenzima A), formándose en acetil-CoA gracias a la enzima piruvato deshidrogenasa, se puede entrar al ciclo de Krebs (que, junto con la cadena de transporte de electrones, se denomina respiración).

Regulación

El efecto Pasteur

Artículo principal: Efecto Pasteur

El efecto Pasteur es la visualización del poder que posee el O2 en la fermentación mediada por levadura, que fue descubierto por Luis Pasteur al observar la relación entre la tasa de fermentación y la existencia de aire. El determinó que éstas tenían una relación inversa, y además observó que en condiciones aeróbicas, las células de levadura aumentaban y la fermentación disminuía.

De esta manera, el efecto Pasteur fue una de las primeras observaciones que alguien realizó al proceso de la glucólisis de manera indirecta, pero observando que el metabolismo primario de glucosa se podía realizar con presencia o ausencia de oxigeno, y que en este último ocurre la fermentación alcohólica.

Obtención de glucosa

Regulación enzimática

Gráfico que muestra la Energía libre de cada reacción en la Glucólisis

La glucólisis se regula enzimáticamente en los tres puntos irreversibles de esta ruta, esto es, en la primera reacción (G — >G-6P), por medio de la hexoquinasa; en la tercera reacción (F-6P –> F-1,6-BP) por medio de la PFK1 y en el último paso (PEP –> Piruvato) por la piruvato quinasa.

  • La hexoquinasa es un punto de regulación poco importante, ya que se inhibe cuando hay mucho G-6P en músculo. Es un punto poco importante ya que el G-6P se utiliza para otras vías.

HQ: Inhibe G-6P

  • La PFK1 es la enzima principal de la regulación de la glucólisis, actúa como una llave de agua, si está activa cataliza muchas reacciones y se obtiene más Fructosa 1,6 bifosfato, lo que permitirá a las enzimas siguientes transformar mucho piruvato. Si está inhibida, se obtienen bajas concentraciones de producto y por lo tanto se obtiene poco piruvato.

Esta enzima es controlada por regulación alostérica mediante: Por un lado se activa gracias a niveles energéticos elevados de ADP y AMP, inhibiendose en abundancia de ATP y citrato, y por otro se activa en presencia de un regulador generado por la PFK2 que es la Fructosa-2,6-Bisfosfato (F-2,6-BP), que no es un metabolito ni de la glucolisis ni de la gluconeogénesis, sino un regulador de ambas vías que refleja el nivel de glucagón en sangre.

La lógica de la inhibición y activación son las siguientes:

    • ATP: inhibe esta enzima pues si hay una alta concentración de ATP entonces la célula no necesita generar más.
    • Citrato: Si la concentración de citrato es alta el Ciclo de Krebs va más despacio de lo que el sustrato (acetil-CoA) llega para degradarse, y la concentración de glucosa será más alta. En el Ciclo de Krebs se produce mucho NADH y FADH2, para que funcionen se han de reoxidar en la cadena de transporte electrónico creando gradiente de protones, si el gradiente no se gasta los coenzimas no se reoxidan y el Ciclo de Krebs se para.
    • AMP, ADP: la alta concentración de estas moléculas implica que hay una carencia de ATP, por lo que es necesario realizar glucólisis, para generar piruvato y energía.

PFK1: Inhibe: ATP – Activa: ADP, AMP y F-2,6-BP.

  • La piruvatoquinasa se regula distintamente según el tejido en el que trabaje, pero en hígado se inhibe en presencia de ATP y Acetil Coenzima-A (Acetil-CoA), y se activa gracias de nuevo ante la F-2,6-BP y la concentración de fosfoenolpiruvato.

PQ: Inhibe: ATP, A-CoA – Activa: PEP y F-2,6-BP

Regulación por insulina

Al aumentar la glucosa en la sangre, después de una comida, las células beta del páncreas estimulan la producción de insulina, y ésta a su vez aumenta la actividad de la glucocinasa en los hepatocitos.

Las concentraciones altas de glucagon y las bajas de insulina disminuyen la concentración intracelular de fructosa 2,6 bisfosfato. Esto trae por consecuencia la disminución de la glicólisis y el aumento de la gluconeogenésis.

Glucólisis en otros organismos

Glucólisis en plantas

En las plantas, una parte de la fotosíntesis es la ruta glucolítica. Ésta aparece mediante el ciclo de Calvin, que a través de pentosas, produce glucosa, fructosa y almidón.

Gluconeogénesis

Artículo principal: Gluconeogénesis

La gluconeogénesis es la ruta anabólica por la que tiene lugar la síntesis de nueva glucosa a partir de precursores no glucosídicos (lactato, piruvato, glicerol y algunos aminoácidos). Se lleva a cabo principalmente en el hígado, y en menor medida en la corteza renal.

La glucogénesis es estímulada por la hormona glucagón, secretada por las células α (alfa) de los islotes de Langerhans del páncreas y es inhibida por su contrarreguladora, la hormona insulina, secretada por las células β (beta) de los islotes de Langerhans del páncreas, que estímula la ruta catabólica llamada glucogenólisis para degradar el glucógeno almacenado y transformarlo en glucosa y así aumentar la glucemia (azúcar en sangre).

Desde el punto de vista enzimático, producir glucosiliosas desde lacticosinidas cuesta más de lo que produjo su degradación fosfórica. La ecuación extrafundamental es: 2 ac. piruviconio + 4 ATP + 2 GTP + 9 NADH + 7 H + 3 H2O –> Glucosa + 4 ADP + 2 GDP + 6 P + 2 NAD+

El proceso de Glucogénesis, también conocido como síntesis de nueva glucosa.

La mitocondria es el orgánulo encargado de la respiración celular y la producción de ATP.